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Lung cancer, the leading cause of cancer mortality, exhibits di-
verse histologic subtypes and genetic complexities. Numerous
preclinical mouse models have been developed to study lung
cancer, but data from these models are disparate, siloed, and dif-
ficult to compare in a centralized fashion. In this study, we
established the Lung Cancer Autochthonous Model Gene Expres-
sion Database (LCAMGDB), an extensive repository of
1,354 samples from 77 transcriptomic datasets covering 974 sam-
ples from genetically engineered mouse models (GEMM),
368 samples from carcinogen-induced models, and 12 samples
from a spontaneous model. Meticulous curation and collaboration
with data depositors produced a robust and comprehensive data-
base, enhancing the fidelity of the genetic landscape it depicts. The
LCAMGDB aligned 859 tumors from GEMMs with human lung

Introduction

Lung cancer remains the most common cause of cancer-related
mortality globally, with its complexity reflected in diverse histologic
subtypes, such as adenocarcinoma (ADC), squamous cell carci-
noma (SQCC), large cell carcinoma, and small cell lung carcinoma
(SCLC), each harboring distinct genetic alterations that drive tumor
biology, which in some cases dictates therapeutic vulnerabilities. To
decipher the complexities of tumor biology, high-throughput mo-
lecular profiling of patient-derived tumors has been extensively used
(1-7). Preclinical models of lung cancer are essential tools for re-
searchers to understand cancer biology and develop therapeutic
strategies through experimentation. There has been a concerted
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cancer mutations, enabling comparative analysis and revealing a
pressing need to broaden the diversity of genetic aberrations
modeled in the GEMMs. To accompany this resource, a web ap-
plication was developed that offers researchers intuitive tools for
in-depth gene expression analysis. With standardized reprocessing
of gene expression data, the LCAMGDB serves as a powerful
platform for cross-study comparison and lays the groundwork for
future research, aiming to bridge the gap between mouse models
and human lung cancer for improved translational relevance.

Significance: The Lung Cancer Autochthonous Model Gene
Expression Database (LCAMGDB) provides a comprehensive
and accessible resource for the research community to investigate
lung cancer biology in mouse models.

effort to aggregate data from patient-derived cell lines (8, 9) and
patient-derived xenografts (10). Although lung cancer autochtho-
nous animal models, primarily based on mice, represent a separate
but significant line of research, they often lack unified character-
ization because of independent development across various
laboratories.

To address this gap, we conducted a comprehensive review of
transcriptomic databases, specifically Gene Expression Omnibus
and ArrayExpress, collected transcriptomic data from lung cancer
mouse models, and standardized associated sample and oncogeno-
type information. We actively engaged with data depositors to refine
our curation process and incorporate their insights. These efforts
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have culminated in the creation of the Lung Cancer Autochthonous
Model Gene Expression Database (LCAMGDB). This resource
serves as a centralized platform for the research community, pro-
viding access to a comprehensive collection of genetically engi-
neered and chemically induced mouse models of lung cancer. We
also developed a user-friendly web application populated from this
database, offering researchers intuitive tools for dynamic data ex-
ploration and sophisticated analysis.

Materials and Methods

Dataset screening

We performed a comprehensive search for transcriptomic
datasets in publicly available repositories, specifically the Gene
Expression Omnibus and ArrayExpress. Search parameters in-
cluded the keywords “lung cancer” and were restricted to species
“Mus musculus,” and the data type confined to gene expression
profiling by array or high-throughput sequencing. Identified
datasets were manually inspected to ensure their relevance and
inclusion of data generated from autochthonous models, including
genetically engineered mouse models (GEMM), chemically in-
duced mouse models, and spontaneous models of lung cancer.
Expression and annotation data were downloaded programmati-
cally using the R package GEOquery (11), and supplementary data
files were accessed via the getGEOSuppFiles function. Additional
metadata were obtained from the associated publications or di-
rectly from data depositors. Discrepancies were resolved pro-
grammatically and manually. Duplicate entries were flagged and
corrected using custom scripts, ensuring no redundancy in the
curated database.

LCAMGDB data organization and curation process
LCAMGDB organizes data into three primary tables, for datasets,
samples, and genotypes. The dataset table contains data accession
IDs, platform IDs, model types, study titles, publication PubMed
(PM) IDs, PubMed Central (PMC) IDs, and the contact information
of data depositors. The sample table contains accession IDs, sample
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names, types, treatments, strains, sex, age, genotype, histologic
classification, primary/metastasis status, sources of Affymetrix data,
Sequence Read Archive (SRA) IDs, and growth protocols. The ge-
notype table was designed to record details of model genetic ma-
nipulations. It contains multiple rows for each genotype to specify
the genes involved, genetic constructs, zygosity, the type of genetic
modification (e.g., overexpression and knockout), the method of
genetic manipulation, induction methods, induction systems, pro-
moters used, cell of origin, and additional notes that may provide
context or clarifications. This information is further organized to
generate both standardized and simplified genotypes, concisely in-
dicating the genetic manipulations and induction methods used in
each model.

For data curation, we gathered details from database annotations
and carefully reviewed the original publications to extract the nec-
essary information. We standardized terms to ensure consistency
across the data. For instance, we categorized sample types into four
distinct groups: “bulk tissue,” “microdissected,” “CD45 depleted,”
and “sorted cancer cells.” We also include data fields for the original
curation to preserve the intricacies of the source dataset. For ex-
ample, although we simplified the primary/metastasis tumor status
to “primary” and “metastasis” for consistency, we kept specific de-
tails like “liver metastasis” in the “primary/metastasis original” field
to capture the full depth of the original classifications. In harmo-
nizing the histology data, we recognized the continuum that exists
between mouse tumor classifications of adenoma and ADC. For
example, in the LSL-Kras®'*® model, tumors can progress from
adenoma to ADC between 6 and 16 weeks after infection (12).
However, not all studies explicitly differentiate between adenoma
and ADC. Additionally, multiple clonal tumors may present within
the same sample, in which some may classify as adenomas and
others as ADCs. To address this, we carefully reviewed original
publications and annotations, assigning the most accurate histology
annotation to the “histology.original” field. For cases with clear dis-
tinctions, we labeled them as either “Adenoma” or “ADC.” For those
with ambiguous classifications, we used “Adenoma/ADC.” Conse-
quently, in the “histology” field, we grouped these classifications
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together under “Adenoma/ADC” to maintain consistency and
clarity across the dataset. Integration of depositor feedback en-
sured accuracy and completeness, with iterative revisions docu-
mented for transparency.

Gene expression reprocessing

Affymetrix raw data were downloaded from the GEO and
grouped by platform. For each platform, we downloaded v25 of the
gene-level customized chip definition files from the Molecular and
Behavioral Neuroscience Institute repository (http://brainarray.
mbni.med.umich.edu/Brainarray/Database/CustomCDF/25.0.0/
ensg.asp) at the University of Michigan (13), to reprocess the data
with the most up-to-date and specific gene annotations. The CEL
files were batch-read with the specified platform package and nor-
malized using the Robust Multi-array Average method via the oligo
package, yielding an ExpressionSet (eset) from which gene expres-
sion matrices were extracted. Entrez IDs were converted to gene
symbols based on the NCBI Entrez mapping file.

RNA sequencing (RNA-seq) FASTQ files were downloaded from
the SRA through the SRA Toolkit. Paired-end reads were concate-
nated to be processed as single-end reads. Reads were trimmed to
remove adapters and low-quality sequences and subsequently
aligned to mouse reference GRCm38 by HISAT2 (14). Gene ex-
pression was quantified using featureCounts (15) and GENCODE
(16). We retained genes with nonzero values in >10% of samples,
normalized their counts to library sizes, and computed log-
transformed counts per million (logCPM) values for downstream
analyses.

Depositor-processed data were received in various formats, reflect-
ing the diversity of their sources. We applied log-transformation where
necessary and performed quantile normalization.

American Association for Cancer Research GENIE data
analysis

To compare genetic landscapes between mouse models and human
lung cancers, we analyzed the American Association for Cancer Re-
search (AACR) GENIE data (version 15.0-public; ref. 17). Data were
downloaded from SAGE BIONETWORKS on March 25, 2024 through
R package “synapserutils” (18) with Synapse ID “syn7222066”. We used
mutation status from “data_mutations_extended.txt”, amplification
status (value of 2), and deletion status (value of —2) from
“data_CNA.txt” and structural variation status from “data_sv.txt”
to determine genetic aberrations. Samples of patients with lung
cancer were selected from “data_clinical_sample.txt”. Cumula-
tive counts of genetic aberration events are summarized at the
sample level (note that some patients could have multiple
samples in the dataset). Comparisons highlighted disparities in
genetic coverage between GEMMs and human tumors, empha-
sizing the need for models that better recapitulate human lung
cancer genetics.

Figure generation and statistical analysis

Statistical software R was used for analyses and web application
construction (19). We used principal component analysis (PCA) to
summarize gene expression variability across datasets, focusing on
primary factors such as genotype, treatment, and tumor status. Gene
expression patterns were visualized through scatter plots, heatmaps,
and histograms, highlighting variations in sample clustering and
pathway activity. Significance testing for group comparisons used
the ANOVA and Kruskal-Wallis tests wherever appropriate, with
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multiple comparison-adjusted P values calculated using the
Benjamini-Hochberg method.

For pathway enrichment analysis, the hypergeometric tests were
performed to identify significantly altered pathways based on
Reactome and Kyoto Encyclopedia of Genes and Genomes anno-
tations. Genes with significant expression differences between
groups were analyzed for overrepresented pathways, and the results
were visualized using bar and dot plots to convey enrichment sig-
nificance and gene overlap.

Web application construction

A web application for LCAMGDB was developed using R Shiny,
enabling interactive data exploration, visualization, and cross-study
comparisons. Functionalities include gene-specific analyses, group
comparisons, and PCA visualizations. The application incorporates
dynamic filters for metadata fields such as sample type, treatment,
and histology. Statistical tools for differential expression and path-
way analysis are integrated into the interface. The application is
hosted at https://lccl.shinyapps.io/LCAMGDB/ and supports tuto-
rials for new users.

Data availability

The data analyzed in this study were obtained from the GEO and
ArrayExpress, with sources listed in Supplementary Table S1. The
study, sample, and genotype tables generated in this study are
available as supplementary tables and downloadable from https://
lecl.shinyapps.io/LCAMGDB/. The processed gene expression data
by study or by platform are downloadable from the web app as well.
All other raw data are available upon request from the corre-
sponding author.

Results

Construction of the LCAMGDB

An exhaustive search in the GEO and ArrayExpress identified
nearly 500 candidate lung cancer autochthonous mouse model
datasets. Each of these studies was manually inspected to identify
transcriptomic data generated from GEMMs, chemically induced
tumors, or spontaneously formed tumors. Additionally, we included
control lung samples and those exposed to carcinogenic treatments
while excluding mouse cell lines and allografts into syngeneic re-
cipients to ensure specificity to our research focus. We removed two
datasets because of data redundancy from the reprocessed data
(Supplementary Fig. S1). Our current data collection includes
77 datasets from 71 unique studies (Supplementary Table S1), which
comprised 1,354 samples (Fig. 1A).

After a thorough data harmonization process, we contacted the
data depositors and shared the curated data specific to their studies
along with our data schema, soliciting their verification, rectifica-
tions, or any insights they could offer. Eighty-nine percent of the
data depositors responded to our request to confirm our data
curation. More than half of these contributors provided valuable
corrections and insights, with some recommending additional
datasets for future inclusion (detailed in Supplementary Table S2).
The database was updated accordingly, integrating the depositors’
revised data and constructive feedback.

Our analysis revealed a general trend toward small sample sizes
across the datasets, with a median of 12 samples, ranging from 3 to 143
(Fig. 1B). The median number of detected genes per study is 20,942,
with older microarray platforms reporting fewer genes (Fig. 1C). The
majority of the samples originated from 71 GEMM datasets, including
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Figure 1.

Overview of sample characteristics and distribution in the LCAMGDB. A, Characteristics of individual datasets shown using pie charts. Each column represents a
dataset, and each row corresponds to a specific attribute, with color-coding denoting the category. Attributes include model type, age, sex, sample type,

histology, and primary or metastasis status. Dark gray denotes missing data. B
datasets by bar plots. D-I, Distribution of samples by model type (D), age (E), sex

and C, Sample size (B) and gene feature number (C) distribution across all
(F), sample type (G), tissue type (H), and histology (I). Note that “Lung” under

tissue type or histology can include normal wild-type lungs and also chemical-treated lungs from toxicology studies, or genetically modified non-wild-type
lungs. ADSQ, adenosquamous carcinoma; LCNEC, large cell neuroendocrine carcinoma.

856 cancerous samples and 118 lung samples. Complementary to
these, seven studies contained 368 samples generated from carcinogen-
exposed models, including 239 cancerous samples and 129 lung
samples. One unique dataset covered six spontaneous tumors and six
lung samples in mice of 2 years of age (Fig. 1D). Age details were
available for 407 samples (30%), with a median age of 34 weeks
(Fig. 1E). Sex annotations were available for 609 samples (45%),
encompassing 11 datasets with mixed sexes, six with exclusively female
mice, and eight with exclusively male mice (Fig. 1F).

The sample types were predominantly from bulk tissue or
microdissected specimens. A subset of 146 samples from 11 datasets
underwent techniques such as CD45 depletion or fluorescence-
based cancer cell sorting to reduce tumor microenvironmental
contributions (Fig. 1G). Within the 1,101 curated tumor samples,
73 were identified as metastatic, with 53 metastases arising from
ADC primary tumors and 20 from SCLC (Fig. 1H).

We curated 197 adenomas, 337 ADCs, and 236 cases classified as
both based on authors’ reports and literature reviews. Due to the
overlapping lineage relationship of adenoma and ADC classifications,
we opted to aggregate these under the “Adenoma/ADC” category for
standardized histologic classification. This aggregation highlighted a
dataset composition with 73% Adenoma/ADC, 18.3% SCLC, and only
5.6% SQCC, indicating an underrepresentation of SQCC when con-
trasted with its prevalence in human lung cancer (Fig. 1I).

The genetic landscape of GEMMs and comparison with patient
mutation spectrum

About 859 precancerous lesions (hyperplasia, dysplasia, and car-
cinoma in situ) and tumor samples in the LCAMGDB collection were
developed from the GEMMs. We curated genotype tables to record
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the involved genes, allele zygosity, genetic modifications, manipulative
techniques, induction methods, and cells of origin. We illustrate the
genetic alteration landscape, involving either single or combined
manipulations of 54 genes in these GEMM samples in Fig. 2A. These
include six human genes (EGFR, IGFIR, EZH2, MYCN, CCNEI, and
SNAII) and two viral genes (human papillomavirus E6 and E7) in-
troduced to the GEMMs. We compiled standardized genotypes and
simplified them to harmonize genotype curation and identified a total
of 122 unique standardized genotypes.

Considering lesions/tumors arising from Kras manipulation alone,
for example, 10 distinct standardized genotypes were identified, which
vary in genetic constructs and induction methods (Fig. 2B). Remark-
ably, all these genotypes harbor the G12D mutation, representing only
~15% of KRAS mutations in patients with non-small cell lung cancer
(NSCLG; ref. 20). This disparity underscores the broader issue of limited
genetic variation in GEMM tumors when compared with human
cancers, which is also exemplified by Trp53 mutations. Beyond simply
inactivating p53, mutations in this gene are known to confer additional
gain-of-function properties (21). However, in our current LCAMGDB
database, out of 404 GEMM tumors with Trp53 manipulation, only
16 samples originate from a single study using a Trp53%'7*" mutant
model, with the remainder predominantly involving knockouts or
knockdowns. In our more recent search (Supplementary Table S3), we
identified newer models beginning to address this diversity, such as two
new G12C datasets (22, 23). This highlights the importance of providing
timely updates to reflect advancements as the field evolves.

The gene-centric distribution of genetic alterations in the tumor
samples is detailed in Fig. 2C. Twenty-eight genes are predomi-
nantly activated, whereas 24 are primarily inactivated. Two genes,
Nfe2I2 and Stat3, were subject to both activation and inactivation
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Figure 2.

Summary of GEMM genotypes in LCAMGDB. A, Landscape of genetic modifications in LCAMGDB GEMM tumors by dataset and histology. ADSQ, adenosqu-
amous carcinoma; LCNEC, large cell neuroendocrine carcinoma. B, Sample count by standardized genotype in GEMM tumors with Kras mutation alone. Small
boxes within the bars represent samples from different datasets. C, Sample count in GEMM tumors by single-gene alteration. The y-axis values are printed on the
top of each bar to indicate the total number of tumors with specific genes altered, and the number of unique standardized genotypes involving the specified
genes is given in parentheses. D, Count of GEMMs by the number of altered genes. Bars represent the number of GEMMs with one to four manipulated genes,
irrespective of the manipulation method used or mutation. E, GEMM tumor alterations in LCAMGDB vs. human lung cancer genetic aberrations in the AACR
GENIE version 15 database by gene. Selected human oncogene and tumor suppressor genes not represented in LCAMGDB are highlighted in gray.

studies within the GEMMs. This figure also denotes the number of
standardized genotypes associated with each gene, represented in
parentheses next to the total sample count. Notably, 29 of the
54 genes were exclusive to a single model. When considering the
unique gene combinations, dual-gene manipulations emerged as the
most common scenario, presented in 28 distinct instances. By
contrast, manipulations of 11 different single genes were adequate to
generate GEMM tumors (Fig. 2D). Only five models contained al-
terations in four genes (Fig. 2D), likely reflecting the inherent

AACRJournals.org

challenges associated with the time and expense required to generate
mice with quadruple-modified alleles.

We next performed a comparative analysis of the frequency of
genetic alterations in mouse lung cancer GEMM-derived tumors
with those identified in human lung cancers (Fig. 2E), as recorded
in the AACR GENIE v15 database, based on clinical sequencing
data from real-world patient populations (17). Mutations in TP53
and KRAS, among the most prevalent mutations in human lung
cancer, are adequately represented in the GEMM tumors. The
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observed positive correlation in gene alteration frequencies between
mouse tumors and patient tumors suggests that GEMMs frequently
incorporate genes commonly mutated in human lung cancer.
However, our review indicates that some genes implicated in human
lung cancers are understudied within the GEMM framework. For
instance, the Eml4-Alk translocation and Kmt2d inactivation have
each been characterized in only one study in our database. More-
over, pivotal oncogenes such as ROS1, MET, RET, and ERBB4 and
critical tumor suppressor genes like NF1, ATM, and APC are cur-
rently absent from the LCAMGDB (Fig. 2E). Supplementary Figure
S2 details the frequency and types of genetic alterations for the top
100 genes most frequently altered in patients with lung cancer
according to the AACR GENIE data, with an emphasis on 78 genes
that are not yet included in the LCAMGDB. These findings un-
derscore the need to broaden the scope of lung cancer GEMM
development and characterization to cover a more extensive array of
genetic drivers of the disease.

Harmonization of gene expression data

To address the limited sample size within individual datasets, we
acquired raw data wherever possible and reprocessed them using
standardized pipelines organized by platforms, each with the latest
probe and gene annotations. This standardization effort enabled us
to make reprocessed data available for 85% of the samples (Fig. 3A).
Notably, approximately half of these samples (n = 563) is derived
from RNA-seq and encompasses 38 distinct datasets (Fig. 3B). PCA
conducted on the top 1,000 variable genes from the reprocessed
RNA-seq data revealed that the first two principal components (PC)
capture 62% of the total variance, indicating a strong structuring of
the data (Fig. 3C). Despite potential batch effects, the PCA dem-
onstrates that different datasets exhibit substantial overlap
(Fig. 3D), with clear distinctions observed between SCLC and
NSCLC samples along PC1 and between primary and metastatic
samples along PC2 (Fig. 3E and F, respectively). For microarray
datasets, we used a similar processing strategy. As an example, PCA
on data from the Mouse430_2 platform (the most represented
microarray platform with 283 samples across 15 datasets) demon-
strated a comparable success in data integration (Supplementary
Fig. S3). Although batches from various experimental conditions,
sample types, and biological differences such as mouse age, sex, and
strain may still be present, our reprocessing method seems to have
effectively consolidated the datasets, thereby facilitating cross-
dataset comparisons and potentially uncovering broader trends
within the merged data.

A user-friendly web application for LCAMGDB

To facilitate the exploration and analysis of the LCAMGDB data, we
constructed a web application that can be accessed at https:/lccl.
shinyapps.io/LCAMGDB/. This application is structured into two pri-
mary sections: a data review panel and an analysis panel. We have
included eight sets of step-by-step tutorials for these functionalities
providing guidance for users to navigate and analyze the datasets.

Within the data review panel, the “Overview” tab presents
graphical summaries of the LCAMGDB, and the “Studies,” “Sam-
ples,” and “GEMMs” tabs allow users to review and refine detailed
data tables. These tables correspond to Supplementary Tables S4—
S7 in this article, and they are also downloadable from the web
app. Specifically, the “GEMMSs” tab displays a table in which genetic
alterations are recorded with one gene per line. Each genotype
within a study is distinctively highlighted to facilitate visual sepa-
ration. Users can customize their view, choosing which columns to
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display and applying filters to refine row entries, such as querying
specific gene combinations, with an illustrative example as shown in
Supplementary Fig. S4. Additionally, we provide data download
links organized by dataset for author-processed data and by plat-
form for reprocessed data, allowing users to conduct their own
analyses offline.

The analysis panel offers users an interactive environment to delve
deeper into the gene expression profiles across multiple datasets. To
examine a single gene of interest, the “Depositor-processed” data option
allows researchers to analyze the expression data as originally submitted,
maintaining consistency within datasets and enabling reliable within-
dataset comparisons. The results are visualized as a series of dot plots,
ranked by the statistical significance of expression differences deter-
mined by one-way ANOVA. The “Merged by platform” data option
allows users to examine the reprocessed data by platform, leveraging the
harmonized datasets to discern patterns and insights across different
studies. Additionally, researchers may perform two-group comparisons
across the transcriptome to screen for genes and pathways with dif-
ferential expression patterns. The following sections illustrate these tools
with practical examples.

Comparisons of a single gene in individual datasets

We offer three options for single-gene expression comparison
using depositor-processed data. The first, which compares ex-
pression by genotype and/or treatment, provides the broadest
dataset range and includes versatile sample filtering capabilities.
Users can refine the analysis parameters by using the available
filters within the dropdown menu, tailoring the analysis to their
specific research interests (Supplementary Fig. S5). As exemplified
in Fig. 4, in which the top 6 of 44 datasets qualified from the
specified criteria are shown, we identified several genetic and
treatment conditions that induced the most prominent Cd274 (PD-
L1) expression changes in NSCLC bulk tissue samples. This is
particularly notable in models with Stk1I (also known as Lkbl)
knockout, wherein Cd274 expression is markedly downregulated,
corroborating clinical findings that STKII mutations are signifi-
cantly enriched among PD-L1-negative lung tumors (24). On the
other hand, treatment with oxaliplatin and cyclophosphamide (25)
known to induce immunogenic cell death increased the expression
of Cd274 (Fig. 4, bottom).

To enable more focused analyses on treatment/carcinogenesis
response and cancer progression, we devised two additional com-
parison options for analyzing gene expression: one for treatment
comparisons from 10 studies and another for examining differences
between primary tumors and metastatic lesions from five studies.
The treatment comparison tool is showcased by analysis of the
B-cell marker CdI9 to reveal distinct trends in tumor microenvi-
ronments (Fig. 5A). B cells play dual roles in the tumor microen-
vironment, contributing to both antitumor and protumorigenic
processes. On one hand, they support antitumor immunity by
forming tertiary lymphoid structures and facilitating immunores-
ponses, which correlate with improved prognosis (26) and enhanced
immunotherapy outcomes (27). On the other hand, immunosup-
pressive regulatory B cells can promote tumor development by se-
creting anti-inflammatory cytokines (28). In our analysis, we
observed Cd19 upregulation indicative of B-cell infiltration in a
Braf-driven GEMM under MAPK inhibitor treatment
(GSE145152 dataset), which coincides with tumor regression in this
study (29). Cd19 downregulation, by contrast, was noted in Kras-
driven GEMMs treated with antioxidants (GSE52594 dataset),
which coincides with accelerated tumor progression in this study
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variance. D-F, Distribution of 563 RNA-seq samples by source dataset (D), histology (E), and primary/metastasis status (F). BGI, Beijing Genomics Institute.

(30). These findings suggest that B-cell infiltration in these treat-
ment contexts supports antitumor immunity. Additionally, we ob-
serve Cd19 upregulation in Egfr-driven GEMM:s subjected to a high-
fat diet (GSE119649) and a Kras-driven GEMM under a high-caloric
diet (GSE56260), consistent with findings that obesity creates a
more inflammatory tumor microenvironment in mouse models
(31). Similar observations in human studies have associated high
body mass index with improved overall survival after immune
checkpoint inhibitor therapy in advanced NSCLC (32).

The primary/metastasis comparison tool is exemplified by the
examination of Ezh2 expression, a component of the polycomb
repressive complex 2, which is implicated in gene silencing
(Fig. 5B). With the fine curation of metastatic status in samples
from GSE84447 (33), we observe Ezh2 expression increase with
tumor invasiveness in Kras-driven models, which corroborates
clinical findings that this chromatin modifier is associated with
cancer progression and metastasis (34).

Comparisons of a single gene in merged reprocessed data
Analysis of reprocessed data merged by profiling platform enables

cross-study comparison. Users may select from six platforms with

two or more merged datasets and further filter the input sample (as

AACRJournals.org

in Supplementary Fig. S5). We provide two visualization approaches
for analyses. The first approach is to generate a dot plot with
samples colored by histology and ordered by the median expression
of the user-defined gene in groups stratified by a combination of
data source, genotype, treatment, primary/metastasis status, and
sample type. In the reprocessed RNA-seq data, this gives rise to
115 unique groups and creates a very extensive plot. To demonstrate
this tool, we refined our selection to primary tumors from the RNA-
seq reprocessed data and examined the expression of Cd19. The
lowest expression is found in sorted cancer cells and samples with
CD45 depletion (Fig. 6, bottom), as expected from the depletion of
immune cells. Bulk tissue samples with the lowest CdI19 expression
are from SCLC, consistent with the immune cold nature of this
histologic subtype (35-37). The highest expression of Cd19 is found
in dysplasia samples derived after treatment with the alkylating
agent N-nitroso-tris-chloroethylurea, potentially due to abundant
neoantigen resulting from carcinogen treatment (Fig. 6, top). Users
may select from additional profiling microarray platforms. For ex-
ample, the analysis of Ezh2 expression in reprocessed data of
Mouse430_2 reveals that its expression is much higher in SCLC
than in NSCLC samples (Supplementary Fig. S6), as previously
established (38, 39).
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Figure 4.

Interactive visualization of gene expression across multiple datasets. This figure features the web application’s capability for users to interrogate the expression of a
selected gene, Cd274 (PD-L1), across a range of datasets. The “Depositor-processed” option leverages the original data processed in the deposited datasets, optimizing
the within-dataset comparisons. Users can tailor the analysis by applying filters via the dropdown menu. After selecting the appropriate parameters and clicking
“Submit,” the application generates dot plots arrayed by the statistical significance of their expression differences, as assessed by one-way ANOVA. Displayed here are
the top six datasets from the full results, giving users a snapshot of the gene expression landscape within the application’s extensive repository. Bars in each plot denote
the group median. ADSQ, adenosquamous carcinoma; LCNEC, large cell neuroendocrine carcinoma; Ox/Cy, oxaliplatin and cyclophosphamide.

The second visualization option generates a two-dimensional or data source. Precomputed and ad hoc PCA computation is
PCA plot, with sample points colored based on variables such as available, and the latter allows users to dynamically recompute PCs
gene expression, histology, primary/metastasis status, sample type, based on their selected subsets of data. In Fig. 7A, we demonstrate

Cancer Res; 85(10) May 15, 2025 CANCER RESEARCH



LCAMGDB: Harmonizing Gene Expression in Lung Cancer Models

Enter or select gene Data Compare
Cd19 - © Depositor-processed Merged by platform By treatment -
GSE145152
\ Adenoma/ADC
1 week on MAPK-inhibitor chow 1 f Braf V600E LSL/+;Trp53-/;Nkx2-1-/- [AT2]
1 week on control chow 1 pv =0.00021
1 week on MAPK-inhibitor chow { } Braf V60OE LSL/+;Trp53-/;Nkx2-1+/- [AT2]
1 week on control chow { } pv =0.03
2 3 4 5
GSE52594
[ Adenoma/ADC
NAC-treated - 4 .
n o = 1 a o oi-als:a: o Kras G12D LSL/+ [intranasal]
Vitamin E-treated Jo @ 165027
Untreated | ,
4 5 6 7 8
GSE119649
\ Adenoma/ADC |
regular diet+Dox - } EGFR L858R [club cell]
high-fat diet+Dox 1 pv =0.021
4.6 4.8 5.0 5.2
GSE56260
\ Adenoma/ADC |
standard diet | $ Kras G12D [club cell]
high calorie diet + | pv = 0.032
B 70 71 72
Enter or select gene Data Compare
Ezh2 - © Depositor-processed Merged by platform Primary vs. Metastasis -
GSE84447
Hyperplasia - Kras G12D LSL/+ [intratracheal]
Distant metastasis - o ®e o+ ® . .
Lymph Node metastasis - o oo of coo °
Pleural metastasis o $ o
Pleural Cavity Disseminating tumor cells - o + ® Kras G12D LSL/+;Trp53-/- [intratracheal]
Metastatic primary tumor - e ¢ PV =2.1e-
Non-metastatic primary tumor 1 '
p53 deficient hyperplasia -
Normal lung -
5 6 7
GSE14449
Metastasis,heart met - +
Metastasis, Liver met - ° | °
Metastasis,Mediastinal LN - . | .
Metastasis,Parietal pleural nodule - ¢ Kras G12D ;Trp53 R172H [spontaneous recombination]
Metastasis,s.c. met/body wall - i pv =0.048
Metastasis,s.c. met -
Metastasis,Inguinal met -
Primary lung cancer,Adenocarcinoma -
6.0 6.5 70 75 8.0 8.5

Figure 5.

Gene expression comparison by treatment and primary/metastasis status. A, Expression of Cd79 revealing B-cell infiltration in various treatment contexts. Data
points are categorized by treatment conditions under each genotype. B, Expression of Ezh2 in primary and metastatic tumor samples. Color gradient signifying
the spectrum of metastatic progression stages. P values from one-way ANOVA are indicated, and results were ordered by statistical significance. For con-
ciseness, only the top four datasets of the 10 for Ca79 (A) and the top two of the five for Ezh2 (B) have been included in the snapshots. Bars in each plot denote

group median.

this with RNA-seq samples colored to reflect Ascll expression—a
neuroendocrine lineage transcription factor instrumental in SCLC
pathogenesis (40, 41). Consistent with the histologic segregation
observed in Fig. 3E, samples with lower PCI scores, predominantly
of SCLC histology, exhibit elevated AsclI expression.

However, some outliers were identified: a few ADC samples with
higher PCI scores also showed high AsclI levels. Using the interactive
tooltips, users can examine these outliers in detail to understand their
context. In this example, we found that ADC samples are derived from

AACRJournals.org

a model with constitutively active Fgfr1**F in an Rb1/Trp53-deficient
background (Fig. 7A; ref. 42). Although Rb1/Trp53 models generate
classic SCLC, Fgfrl activation in this model has reduced AsclI expres-
sion (42), making it lower than classic SCLC but still higher than classic
ADC tumors from other models (Supplementary Fig. S7).

In another example using the PCA plot with histology color
mapping, there are a few notable outliers among the NSCLC sam-
ples that are identified as SCLC (Fig. 7B). This particular discrep-
ancy is clarified upon recognizing that these SCLC samples have
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Interactive visualization of gene expression in reprocessed data merged by platform. A, PCA plot of reprocessed RNA-seq samples, color-coded by the
expression of Asc/l, a neuroendocrine lineage transcription factor highly expressed in SCLC. The interactive tooltip uncovers the origin of an outlier sample with
elevated Asc/T levels as an ADC sample from an Rb1/p53-deficient model featuring Fgfrl activation. B, PCA plot colored by histology. Details of an SCLC sample
located near the NSCLC samples are displayed. This outlier sample has Asc/7 knocked out, which explains the loss of neuroendocrine gene expression that

renders the transcriptomic profile more similar to NSCLC.

undergone Ascll knockout, leading to a complete loss of neuroendo-
crine cell fate (41) that rendered the transcriptomic landscape of the
SCLC sample more akin to that of NSCLC samples, explaining its
outlier position in the PCA plot. These examples underscore how in-
teractive plots equipped with tooltips provide critical insights into
sample-specific details, enabling deeper exploration of unexpected
Ppatterns.

Users also have the option to visualize data points according to
the data source; the interactive plots enable users to selectively focus

AACRJournals.org

on, or exclude, samples from specific sources by clicking or double-
clicking on dataset identifiers, thereby providing a clearer under-
standing of the underlying data distribution across studies (Sup-
plementary Fig. S8).

Transcriptome-wide group comparison

The transcriptome-wide group comparison feature in
LCAMGDB provides users with the ability to conduct differential
expression analyses between two distinct sample groups. This
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Figure 8.

Transcriptome-wide group comparison of Myc-overexpressed tumors vs. wild-type lung samples. A, User interface for defining group 1 (Myc-overexpressed
tumors) and group 2 (wild-type lung samples) using depositor-processed data. The panel allows users to refine input datasets and samples based on variables
such as genotype, histology, and treatment, with a sample tree for finalizing sample selection. B-E, Example outputs from the downloadable Excel file, including
the group stratification (B), the gene-level comparison from the two-sample t test (C), and pathway enrichment analysis with hypergeometric test from
Reactome pathway library for genes higher in the lungs (group 2; D) or higher in tumors (E).

functionality is available for both depositor-processed data and
reprocessed data.

In Fig. 8, we provide an example comparing Myc-overexpressed
tumors with wild-type lung samples from GSE10954 (43). The in-
teractive filters allow the selection of groups based on variables such
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as genotype, treatment, or sample type (Fig. 8A). After defining the
groups, users may explore the analysis outputs on the web app or
download them as an Excel file for further examination. Figure 8B-
E are examples of the downloadable results, including the user-
defined group stratification (Fig. 8B), differentially expressed genes
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from the two-sample ¢ test, identifying Myc among the most
upregulated genes in tumor samples, along with other well-known
Myc targets such as Gls (encoding glutaminase; Fig. 8C; ref. 44).
Furthermore, pathway enrichment analyses revealed higher ex-
pression of oxidative phosphorylation genes in the lungs (Fig. 8D)
and upregulation of cell-cycle genes in tumors (Fig. 8E). This ex-
ample analysis highlights how this tool uncovers biologically
meaningful patterns, leveraging the high fidelity of depositor-
processed data.

Reprocessed data analyses expand the scope to include samples
across multiple datasets. Users can select groups from harmonized
data but should be mindful of potential batch effects. Researchers
may reference our online tutorial with an example that compared
SCLC and NSCLC samples from different studies, to better under-
stand how to use this tool. Although this approach is ideal for
identifying trends and validating findings, depositor-processed data
remain more reliable for finer, exploratory analyses, minimizing the
risk of confounding factors. We welcome collaborations with re-
searchers interested in performing more sophisticated statistical
analyses or customized study designs.

Discussion

Our LCAMGDB presents a curated compendium of tran-
scriptomic data covering 1,354 samples from 71 studies, summa-
rizing a vast array of lung cancer mouse models. This resource
interrogates the genetic aberration landscape across 859 GEMM
tumors, providing an unprecedented platform for cross-study
comparison. Our collaborative approach, engaging with data de-
positors, has ensured the integrity and enhancement of the database,
leading to its current comprehensive state.

However, we have to consider the limitations inherent to the
database’s scope. The LCAMGDB is founded on transcriptomic
data, which excludes mouse models lacking such characterization.
This limitation underscores the need for an inclusive approach that
considers unpublished or less-publicized models to achieve a com-
prehensive and representative overview of genetic alterations in lung
cancer autochthonous models. The dynamic nature of scientific
research also necessitates the LCAMGDB to be a living database,
with ongoing updates and expansions informed by both community
feedback and continual data discovery. Future versions will integrate
additional datasets, reflecting the latest advancements and filling in
gaps identified through collaborative suggestions and our active
searches. These updates will include datasets featuring key Kras
mutant models, such as Kras G12C (e.g., Kras/Trp53 and Kras/Stk11
models), which are not represented in the current release. The
candidate datasets to be included in the next update are listed in
Supplementary Table S3. These include datasets from a more recent
GEO/ArrayExpress screen and datasets suggested by the commu-
nity, such as toxicology studies of mouse lungs treated with car-
cinogens. We will also continue to develop the collaborator login
system, enabling researchers to privately assess their data alongside
public datasets. Although not expounded upon in this article, this
function highlights the platform’s potential for fostering collabora-
tive research endeavors.

It is important to note the caution required in interpreting the
reprocessed data. Although standardization efforts have been rig-
orous, batch effects from diverse experimental and genetic back-
grounds may still be present. Users should not attribute the
expression variation solely to genotype. Future updates will aim to
support meta-analytical capabilities and provide insights from
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comprehensive cross-transcriptomic evaluations. Central to the
LCAMGDB use is its facilitation of comprehensive comparisons
between mouse models, additional preclinical model data, such as
patient-derived cell lines, patient-derived xenografts, syngeneic
mouse models, and human lung cancer data. This alignment is
crucial for translating preclinical findings to clinical relevance,
aiding in the development of personalized therapies. The database’s
current iteration lays the groundwork for such comparative studies,
which we plan to explore in-depth in subsequent analyses.

In sum, the LCAMGDB offers a robust framework for the ex-
ploration of gene expression data within mouse models, setting the
stage for additional comprehensive analyses that have the potential
to unveil new discoveries and guide the design of future models for
a more accurate reflection of human lung cancer.
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