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�
 ABSTRACT 

Lung cancer, the leading cause of cancer mortality, exhibits di-
verse histologic subtypes and genetic complexities. Numerous 
preclinical mouse models have been developed to study lung 
cancer, but data from these models are disparate, siloed, and dif-
ficult to compare in a centralized fashion. In this study, we 
established the Lung Cancer Autochthonous Model Gene Expres-
sion Database (LCAMGDB), an extensive repository of 
1,354 samples from 77 transcriptomic datasets covering 974 sam-
ples from genetically engineered mouse models (GEMM), 
368 samples from carcinogen-induced models, and 12 samples 
from a spontaneous model. Meticulous curation and collaboration 
with data depositors produced a robust and comprehensive data-
base, enhancing the fidelity of the genetic landscape it depicts. The 
LCAMGDB aligned 859 tumors from GEMMs with human lung 

cancer mutations, enabling comparative analysis and revealing a 
pressing need to broaden the diversity of genetic aberrations 
modeled in the GEMMs. To accompany this resource, a web ap-
plication was developed that offers researchers intuitive tools for 
in-depth gene expression analysis. With standardized reprocessing 
of gene expression data, the LCAMGDB serves as a powerful 
platform for cross-study comparison and lays the groundwork for 
future research, aiming to bridge the gap between mouse models 
and human lung cancer for improved translational relevance. 

Significance: The Lung Cancer Autochthonous Model Gene 
Expression Database (LCAMGDB) provides a comprehensive 
and accessible resource for the research community to investigate 
lung cancer biology in mouse models. 

Introduction 
Lung cancer remains the most common cause of cancer-related 

mortality globally, with its complexity reflected in diverse histologic 
subtypes, such as adenocarcinoma (ADC), squamous cell carci-
noma (SQCC), large cell carcinoma, and small cell lung carcinoma 
(SCLC), each harboring distinct genetic alterations that drive tumor 
biology, which in some cases dictates therapeutic vulnerabilities. To 
decipher the complexities of tumor biology, high-throughput mo-
lecular profiling of patient-derived tumors has been extensively used 
(1–7). Preclinical models of lung cancer are essential tools for re-
searchers to understand cancer biology and develop therapeutic 
strategies through experimentation. There has been a concerted 

effort to aggregate data from patient-derived cell lines (8, 9) and 
patient-derived xenografts (10). Although lung cancer autochtho-
nous animal models, primarily based on mice, represent a separate 
but significant line of research, they often lack unified character-
ization because of independent development across various 
laboratories. 

To address this gap, we conducted a comprehensive review of 
transcriptomic databases, specifically Gene Expression Omnibus 
and ArrayExpress, collected transcriptomic data from lung cancer 
mouse models, and standardized associated sample and oncogeno-
type information. We actively engaged with data depositors to refine 
our curation process and incorporate their insights. These efforts 
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have culminated in the creation of the Lung Cancer Autochthonous 
Model Gene Expression Database (LCAMGDB). This resource 
serves as a centralized platform for the research community, pro-
viding access to a comprehensive collection of genetically engi-
neered and chemically induced mouse models of lung cancer. We 
also developed a user-friendly web application populated from this 
database, offering researchers intuitive tools for dynamic data ex-
ploration and sophisticated analysis. 

Materials and Methods 
Dataset screening 

We performed a comprehensive search for transcriptomic 
datasets in publicly available repositories, specifically the Gene 
Expression Omnibus and ArrayExpress. Search parameters in-
cluded the keywords “lung cancer” and were restricted to species 
“Mus musculus,” and the data type confined to gene expression 
profiling by array or high-throughput sequencing. Identified 
datasets were manually inspected to ensure their relevance and 
inclusion of data generated from autochthonous models, including 
genetically engineered mouse models (GEMM), chemically in-
duced mouse models, and spontaneous models of lung cancer. 
Expression and annotation data were downloaded programmati-
cally using the R package GEOquery (11), and supplementary data 
files were accessed via the getGEOSuppFiles function. Additional 
metadata were obtained from the associated publications or di-
rectly from data depositors. Discrepancies were resolved pro-
grammatically and manually. Duplicate entries were flagged and 
corrected using custom scripts, ensuring no redundancy in the 
curated database. 

LCAMGDB data organization and curation process 
LCAMGDB organizes data into three primary tables, for datasets, 

samples, and genotypes. The dataset table contains data accession 
IDs, platform IDs, model types, study titles, publication PubMed 
(PM) IDs, PubMed Central (PMC) IDs, and the contact information 
of data depositors. The sample table contains accession IDs, sample 

names, types, treatments, strains, sex, age, genotype, histologic 
classification, primary/metastasis status, sources of Affymetrix data, 
Sequence Read Archive (SRA) IDs, and growth protocols. The ge-
notype table was designed to record details of model genetic ma-
nipulations. It contains multiple rows for each genotype to specify 
the genes involved, genetic constructs, zygosity, the type of genetic 
modification (e.g., overexpression and knockout), the method of 
genetic manipulation, induction methods, induction systems, pro-
moters used, cell of origin, and additional notes that may provide 
context or clarifications. This information is further organized to 
generate both standardized and simplified genotypes, concisely in-
dicating the genetic manipulations and induction methods used in 
each model. 

For data curation, we gathered details from database annotations 
and carefully reviewed the original publications to extract the nec-
essary information. We standardized terms to ensure consistency 
across the data. For instance, we categorized sample types into four 
distinct groups: “bulk tissue,” “microdissected,” “CD45 depleted,” 
and “sorted cancer cells.” We also include data fields for the original 
curation to preserve the intricacies of the source dataset. For ex-
ample, although we simplified the primary/metastasis tumor status 
to “primary” and “metastasis” for consistency, we kept specific de-
tails like “liver metastasis” in the “primary/metastasis original” field 
to capture the full depth of the original classifications. In harmo-
nizing the histology data, we recognized the continuum that exists 
between mouse tumor classifications of adenoma and ADC. For 
example, in the LSL-KrasG12D model, tumors can progress from 
adenoma to ADC between 6 and 16 weeks after infection (12). 
However, not all studies explicitly differentiate between adenoma 
and ADC. Additionally, multiple clonal tumors may present within 
the same sample, in which some may classify as adenomas and 
others as ADCs. To address this, we carefully reviewed original 
publications and annotations, assigning the most accurate histology 
annotation to the “histology.original” field. For cases with clear dis-
tinctions, we labeled them as either “Adenoma” or “ADC.” For those 
with ambiguous classifications, we used “Adenoma/ADC.” Conse-
quently, in the “histology” field, we grouped these classifications 
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together under “Adenoma/ADC” to maintain consistency and 
clarity across the dataset. Integration of depositor feedback en-
sured accuracy and completeness, with iterative revisions docu-
mented for transparency. 

Gene expression reprocessing 
Affymetrix raw data were downloaded from the GEO and 

grouped by platform. For each platform, we downloaded v25 of the 
gene-level customized chip definition files from the Molecular and 
Behavioral Neuroscience Institute repository (http://brainarray. 
mbni.med.umich.edu/Brainarray/Database/CustomCDF/25.0.0/ 
ensg.asp) at the University of Michigan (13), to reprocess the data 
with the most up-to-date and specific gene annotations. The CEL 
files were batch-read with the specified platform package and nor-
malized using the Robust Multi-array Average method via the oligo 
package, yielding an ExpressionSet (eset) from which gene expres-
sion matrices were extracted. Entrez IDs were converted to gene 
symbols based on the NCBI Entrez mapping file. 

RNA sequencing (RNA-seq) FASTQ files were downloaded from 
the SRA through the SRA Toolkit. Paired-end reads were concate-
nated to be processed as single-end reads. Reads were trimmed to 
remove adapters and low-quality sequences and subsequently 
aligned to mouse reference GRCm38 by HISAT2 (14). Gene ex-
pression was quantified using featureCounts (15) and GENCODE 
(16). We retained genes with nonzero values in >10% of samples, 
normalized their counts to library sizes, and computed log- 
transformed counts per million (logCPM) values for downstream 
analyses. 

Depositor-processed data were received in various formats, reflect-
ing the diversity of their sources. We applied log-transformation where 
necessary and performed quantile normalization. 

American Association for Cancer Research GENIE data 
analysis 

To compare genetic landscapes between mouse models and human 
lung cancers, we analyzed the American Association for Cancer Re-
search (AACR) GENIE data (version 15.0-public; ref. 17). Data were 
downloaded from SAGE BIONETWORKS on March 25, 2024 through 
R package “synapserutils” (18) with Synapse ID “syn7222066”. We used 
mutation status from “data_mutations_extended.txt”, amplification 
status (value of 2), and deletion status (value of �2) from 
“data_CNA.txt” and structural variation status from “data_sv.txt” 
to determine genetic aberrations. Samples of patients with lung 
cancer were selected from “data_clinical_sample.txt”. Cumula-
tive counts of genetic aberration events are summarized at the 
sample level (note that some patients could have multiple 
samples in the dataset). Comparisons highlighted disparities in 
genetic coverage between GEMMs and human tumors, empha-
sizing the need for models that better recapitulate human lung 
cancer genetics. 

Figure generation and statistical analysis 
Statistical software R was used for analyses and web application 

construction (19). We used principal component analysis (PCA) to 
summarize gene expression variability across datasets, focusing on 
primary factors such as genotype, treatment, and tumor status. Gene 
expression patterns were visualized through scatter plots, heatmaps, 
and histograms, highlighting variations in sample clustering and 
pathway activity. Significance testing for group comparisons used 
the ANOVA and Kruskal–Wallis tests wherever appropriate, with 

multiple comparison–adjusted P values calculated using the 
Benjamini–Hochberg method. 

For pathway enrichment analysis, the hypergeometric tests were 
performed to identify significantly altered pathways based on 
Reactome and Kyoto Encyclopedia of Genes and Genomes anno-
tations. Genes with significant expression differences between 
groups were analyzed for overrepresented pathways, and the results 
were visualized using bar and dot plots to convey enrichment sig-
nificance and gene overlap. 

Web application construction 
A web application for LCAMGDB was developed using R Shiny, 

enabling interactive data exploration, visualization, and cross-study 
comparisons. Functionalities include gene-specific analyses, group 
comparisons, and PCA visualizations. The application incorporates 
dynamic filters for metadata fields such as sample type, treatment, 
and histology. Statistical tools for differential expression and path-
way analysis are integrated into the interface. The application is 
hosted at https://lccl.shinyapps.io/LCAMGDB/ and supports tuto-
rials for new users. 

Data availability 
The data analyzed in this study were obtained from the GEO and 

ArrayExpress, with sources listed in Supplementary Table S1. The 
study, sample, and genotype tables generated in this study are 
available as supplementary tables and downloadable from https:// 
lccl.shinyapps.io/LCAMGDB/. The processed gene expression data 
by study or by platform are downloadable from the web app as well. 
All other raw data are available upon request from the corre-
sponding author. 

Results 
Construction of the LCAMGDB 

An exhaustive search in the GEO and ArrayExpress identified 
nearly 500 candidate lung cancer autochthonous mouse model 
datasets. Each of these studies was manually inspected to identify 
transcriptomic data generated from GEMMs, chemically induced 
tumors, or spontaneously formed tumors. Additionally, we included 
control lung samples and those exposed to carcinogenic treatments 
while excluding mouse cell lines and allografts into syngeneic re-
cipients to ensure specificity to our research focus. We removed two 
datasets because of data redundancy from the reprocessed data 
(Supplementary Fig. S1). Our current data collection includes 
77 datasets from 71 unique studies (Supplementary Table S1), which 
comprised 1,354 samples (Fig. 1A). 

After a thorough data harmonization process, we contacted the 
data depositors and shared the curated data specific to their studies 
along with our data schema, soliciting their verification, rectifica-
tions, or any insights they could offer. Eighty-nine percent of the 
data depositors responded to our request to confirm our data 
curation. More than half of these contributors provided valuable 
corrections and insights, with some recommending additional 
datasets for future inclusion (detailed in Supplementary Table S2). 
The database was updated accordingly, integrating the depositors’ 
revised data and constructive feedback. 

Our analysis revealed a general trend toward small sample sizes 
across the datasets, with a median of 12 samples, ranging from 3 to 143 
(Fig. 1B). The median number of detected genes per study is 20,942, 
with older microarray platforms reporting fewer genes (Fig. 1C). The 
majority of the samples originated from 71 GEMM datasets, including 
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856 cancerous samples and 118 lung samples. Complementary to 
these, seven studies contained 368 samples generated from carcinogen- 
exposed models, including 239 cancerous samples and 129 lung 
samples. One unique dataset covered six spontaneous tumors and six 
lung samples in mice of 2 years of age (Fig. 1D). Age details were 
available for 407 samples (30%), with a median age of 34 weeks 
(Fig. 1E). Sex annotations were available for 609 samples (45%), 
encompassing 11 datasets with mixed sexes, six with exclusively female 
mice, and eight with exclusively male mice (Fig. 1F). 

The sample types were predominantly from bulk tissue or 
microdissected specimens. A subset of 146 samples from 11 datasets 
underwent techniques such as CD45 depletion or fluorescence- 
based cancer cell sorting to reduce tumor microenvironmental 
contributions (Fig. 1G). Within the 1,101 curated tumor samples, 
73 were identified as metastatic, with 53 metastases arising from 
ADC primary tumors and 20 from SCLC (Fig. 1H). 

We curated 197 adenomas, 337 ADCs, and 236 cases classified as 
both based on authors’ reports and literature reviews. Due to the 
overlapping lineage relationship of adenoma and ADC classifications, 
we opted to aggregate these under the “Adenoma/ADC” category for 
standardized histologic classification. This aggregation highlighted a 
dataset composition with 73% Adenoma/ADC, 18.3% SCLC, and only 
5.6% SQCC, indicating an underrepresentation of SQCC when con-
trasted with its prevalence in human lung cancer (Fig. 1I). 

The genetic landscape of GEMMs and comparison with patient 
mutation spectrum 

About 859 precancerous lesions (hyperplasia, dysplasia, and car-
cinoma in situ) and tumor samples in the LCAMGDB collection were 
developed from the GEMMs. We curated genotype tables to record 

the involved genes, allele zygosity, genetic modifications, manipulative 
techniques, induction methods, and cells of origin. We illustrate the 
genetic alteration landscape, involving either single or combined 
manipulations of 54 genes in these GEMM samples in Fig. 2A. These 
include six human genes (EGFR, IGF1R, EZH2, MYCN, CCNE1, and 
SNAI1) and two viral genes (human papillomavirus E6 and E7) in-
troduced to the GEMMs. We compiled standardized genotypes and 
simplified them to harmonize genotype curation and identified a total 
of 122 unique standardized genotypes. 

Considering lesions/tumors arising from Kras manipulation alone, 
for example, 10 distinct standardized genotypes were identified, which 
vary in genetic constructs and induction methods (Fig. 2B). Remark-
ably, all these genotypes harbor the G12D mutation, representing only 
∼15% of KRAS mutations in patients with non–small cell lung cancer 
(NSCLC; ref. 20). This disparity underscores the broader issue of limited 
genetic variation in GEMM tumors when compared with human 
cancers, which is also exemplified by Trp53 mutations. Beyond simply 
inactivating p53, mutations in this gene are known to confer additional 
gain-of-function properties (21). However, in our current LCAMGDB 
database, out of 404 GEMM tumors with Trp53 manipulation, only 
16 samples originate from a single study using a Trp53R172H mutant 
model, with the remainder predominantly involving knockouts or 
knockdowns. In our more recent search (Supplementary Table S3), we 
identified newer models beginning to address this diversity, such as two 
new G12C datasets (22, 23). This highlights the importance of providing 
timely updates to reflect advancements as the field evolves. 

The gene-centric distribution of genetic alterations in the tumor 
samples is detailed in Fig. 2C. Twenty-eight genes are predomi-
nantly activated, whereas 24 are primarily inactivated. Two genes, 
Nfe2l2 and Stat3, were subject to both activation and inactivation 
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Figure 1. 
Overview of sample characteristics and distribution in the LCAMGDB. A, Characteristics of individual datasets shown using pie charts. Each column represents a 
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studies within the GEMMs. This figure also denotes the number of 
standardized genotypes associated with each gene, represented in 
parentheses next to the total sample count. Notably, 29 of the 
54 genes were exclusive to a single model. When considering the 
unique gene combinations, dual-gene manipulations emerged as the 
most common scenario, presented in 28 distinct instances. By 
contrast, manipulations of 11 different single genes were adequate to 
generate GEMM tumors (Fig. 2D). Only five models contained al-
terations in four genes (Fig. 2D), likely reflecting the inherent 

challenges associated with the time and expense required to generate 
mice with quadruple-modified alleles. 

We next performed a comparative analysis of the frequency of 
genetic alterations in mouse lung cancer GEMM–derived tumors 
with those identified in human lung cancers (Fig. 2E), as recorded 
in the AACR GENIE v15 database, based on clinical sequencing 
data from real-world patient populations (17). Mutations in TP53 
and KRAS, among the most prevalent mutations in human lung 
cancer, are adequately represented in the GEMM tumors. The 
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Figure 2. 
Summary of GEMM genotypes in LCAMGDB. A, Landscape of genetic modifications in LCAMGDB GEMM tumors by dataset and histology. ADSQ, adenosqu-
amous carcinoma; LCNEC, large cell neuroendocrine carcinoma. B, Sample count by standardized genotype in GEMM tumors with Kras mutation alone. Small 
boxes within the bars represent samples from different datasets. C, Sample count in GEMM tumors by single-gene alteration. The y-axis values are printed on the 
top of each bar to indicate the total number of tumors with specific genes altered, and the number of unique standardized genotypes involving the specified 
genes is given in parentheses. D, Count of GEMMs by the number of altered genes. Bars represent the number of GEMMs with one to four manipulated genes, 
irrespective of the manipulation method used or mutation. E, GEMM tumor alterations in LCAMGDB vs. human lung cancer genetic aberrations in the AACR 
GENIE version 15 database by gene. Selected human oncogene and tumor suppressor genes not represented in LCAMGDB are highlighted in gray. 
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observed positive correlation in gene alteration frequencies between 
mouse tumors and patient tumors suggests that GEMMs frequently 
incorporate genes commonly mutated in human lung cancer. 
However, our review indicates that some genes implicated in human 
lung cancers are understudied within the GEMM framework. For 
instance, the Eml4–Alk translocation and Kmt2d inactivation have 
each been characterized in only one study in our database. More-
over, pivotal oncogenes such as ROS1, MET, RET, and ERBB4 and 
critical tumor suppressor genes like NF1, ATM, and APC are cur-
rently absent from the LCAMGDB (Fig. 2E). Supplementary Figure 
S2 details the frequency and types of genetic alterations for the top 
100 genes most frequently altered in patients with lung cancer 
according to the AACR GENIE data, with an emphasis on 78 genes 
that are not yet included in the LCAMGDB. These findings un-
derscore the need to broaden the scope of lung cancer GEMM 
development and characterization to cover a more extensive array of 
genetic drivers of the disease. 

Harmonization of gene expression data 
To address the limited sample size within individual datasets, we 

acquired raw data wherever possible and reprocessed them using 
standardized pipelines organized by platforms, each with the latest 
probe and gene annotations. This standardization effort enabled us 
to make reprocessed data available for 85% of the samples (Fig. 3A). 
Notably, approximately half of these samples (n ¼ 563) is derived 
from RNA-seq and encompasses 38 distinct datasets (Fig. 3B). PCA 
conducted on the top 1,000 variable genes from the reprocessed 
RNA-seq data revealed that the first two principal components (PC) 
capture 62% of the total variance, indicating a strong structuring of 
the data (Fig. 3C). Despite potential batch effects, the PCA dem-
onstrates that different datasets exhibit substantial overlap 
(Fig. 3D), with clear distinctions observed between SCLC and 
NSCLC samples along PC1 and between primary and metastatic 
samples along PC2 (Fig. 3E and F, respectively). For microarray 
datasets, we used a similar processing strategy. As an example, PCA 
on data from the Mouse430_2 platform (the most represented 
microarray platform with 283 samples across 15 datasets) demon-
strated a comparable success in data integration (Supplementary 
Fig. S3). Although batches from various experimental conditions, 
sample types, and biological differences such as mouse age, sex, and 
strain may still be present, our reprocessing method seems to have 
effectively consolidated the datasets, thereby facilitating cross- 
dataset comparisons and potentially uncovering broader trends 
within the merged data. 

A user-friendly web application for LCAMGDB 
To facilitate the exploration and analysis of the LCAMGDB data, we 

constructed a web application that can be accessed at https://lccl. 
shinyapps.io/LCAMGDB/. This application is structured into two pri-
mary sections: a data review panel and an analysis panel. We have 
included eight sets of step-by-step tutorials for these functionalities 
providing guidance for users to navigate and analyze the datasets. 

Within the data review panel, the “Overview” tab presents 
graphical summaries of the LCAMGDB, and the “Studies,” “Sam-
ples,” and “GEMMs” tabs allow users to review and refine detailed 
data tables. These tables correspond to Supplementary Tables S4– 
S7 in this article, and they are also downloadable from the web 
app. Specifically, the “GEMMs” tab displays a table in which genetic 
alterations are recorded with one gene per line. Each genotype 
within a study is distinctively highlighted to facilitate visual sepa-
ration. Users can customize their view, choosing which columns to 

display and applying filters to refine row entries, such as querying 
specific gene combinations, with an illustrative example as shown in 
Supplementary Fig. S4. Additionally, we provide data download 
links organized by dataset for author-processed data and by plat-
form for reprocessed data, allowing users to conduct their own 
analyses offline. 

The analysis panel offers users an interactive environment to delve 
deeper into the gene expression profiles across multiple datasets. To 
examine a single gene of interest, the “Depositor-processed” data option 
allows researchers to analyze the expression data as originally submitted, 
maintaining consistency within datasets and enabling reliable within- 
dataset comparisons. The results are visualized as a series of dot plots, 
ranked by the statistical significance of expression differences deter-
mined by one-way ANOVA. The “Merged by platform” data option 
allows users to examine the reprocessed data by platform, leveraging the 
harmonized datasets to discern patterns and insights across different 
studies. Additionally, researchers may perform two-group comparisons 
across the transcriptome to screen for genes and pathways with dif-
ferential expression patterns. The following sections illustrate these tools 
with practical examples. 

Comparisons of a single gene in individual datasets 
We offer three options for single-gene expression comparison 

using depositor-processed data. The first, which compares ex-
pression by genotype and/or treatment, provides the broadest 
dataset range and includes versatile sample filtering capabilities. 
Users can refine the analysis parameters by using the available 
filters within the dropdown menu, tailoring the analysis to their 
specific research interests (Supplementary Fig. S5). As exemplified 
in Fig. 4, in which the top 6 of 44 datasets qualified from the 
specified criteria are shown, we identified several genetic and 
treatment conditions that induced the most prominent Cd274 (PD- 
L1) expression changes in NSCLC bulk tissue samples. This is 
particularly notable in models with Stk11 (also known as Lkb1) 
knockout, wherein Cd274 expression is markedly downregulated, 
corroborating clinical findings that STK11 mutations are signifi-
cantly enriched among PD-L1–negative lung tumors (24). On the 
other hand, treatment with oxaliplatin and cyclophosphamide (25) 
known to induce immunogenic cell death increased the expression 
of Cd274 (Fig. 4, bottom). 

To enable more focused analyses on treatment/carcinogenesis 
response and cancer progression, we devised two additional com-
parison options for analyzing gene expression: one for treatment 
comparisons from 10 studies and another for examining differences 
between primary tumors and metastatic lesions from five studies. 
The treatment comparison tool is showcased by analysis of the 
B-cell marker Cd19 to reveal distinct trends in tumor microenvi-
ronments (Fig. 5A). B cells play dual roles in the tumor microen-
vironment, contributing to both antitumor and protumorigenic 
processes. On one hand, they support antitumor immunity by 
forming tertiary lymphoid structures and facilitating immunores-
ponses, which correlate with improved prognosis (26) and enhanced 
immunotherapy outcomes (27). On the other hand, immunosup-
pressive regulatory B cells can promote tumor development by se-
creting anti-inflammatory cytokines (28). In our analysis, we 
observed Cd19 upregulation indicative of B-cell infiltration in a 
Braf-driven GEMM under MAPK inhibitor treatment 
(GSE145152 dataset), which coincides with tumor regression in this 
study (29). Cd19 downregulation, by contrast, was noted in Kras- 
driven GEMMs treated with antioxidants (GSE52594 dataset), 
which coincides with accelerated tumor progression in this study 
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(30). These findings suggest that B-cell infiltration in these treat-
ment contexts supports antitumor immunity. Additionally, we ob-
serve Cd19 upregulation in Egfr-driven GEMMs subjected to a high- 
fat diet (GSE119649) and a Kras-driven GEMM under a high-caloric 
diet (GSE56260), consistent with findings that obesity creates a 
more inflammatory tumor microenvironment in mouse models 
(31). Similar observations in human studies have associated high 
body mass index with improved overall survival after immune 
checkpoint inhibitor therapy in advanced NSCLC (32). 

The primary/metastasis comparison tool is exemplified by the 
examination of Ezh2 expression, a component of the polycomb 
repressive complex 2, which is implicated in gene silencing 
(Fig. 5B). With the fine curation of metastatic status in samples 
from GSE84447 (33), we observe Ezh2 expression increase with 
tumor invasiveness in Kras-driven models, which corroborates 
clinical findings that this chromatin modifier is associated with 
cancer progression and metastasis (34). 

Comparisons of a single gene in merged reprocessed data 
Analysis of reprocessed data merged by profiling platform enables 

cross-study comparison. Users may select from six platforms with 
two or more merged datasets and further filter the input sample (as 

in Supplementary Fig. S5). We provide two visualization approaches 
for analyses. The first approach is to generate a dot plot with 
samples colored by histology and ordered by the median expression 
of the user-defined gene in groups stratified by a combination of 
data source, genotype, treatment, primary/metastasis status, and 
sample type. In the reprocessed RNA-seq data, this gives rise to 
115 unique groups and creates a very extensive plot. To demonstrate 
this tool, we refined our selection to primary tumors from the RNA- 
seq reprocessed data and examined the expression of Cd19. The 
lowest expression is found in sorted cancer cells and samples with 
CD45 depletion (Fig. 6, bottom), as expected from the depletion of 
immune cells. Bulk tissue samples with the lowest Cd19 expression 
are from SCLC, consistent with the immune cold nature of this 
histologic subtype (35–37). The highest expression of Cd19 is found 
in dysplasia samples derived after treatment with the alkylating 
agent N-nitroso-tris-chloroethylurea, potentially due to abundant 
neoantigen resulting from carcinogen treatment (Fig. 6, top). Users 
may select from additional profiling microarray platforms. For ex-
ample, the analysis of Ezh2 expression in reprocessed data of 
Mouse430_2 reveals that its expression is much higher in SCLC 
than in NSCLC samples (Supplementary Fig. S6), as previously 
established (38, 39). 
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Figure 3. 
Data reprocessing by platform. A, Hierarchical relationship of transcriptomic profiling technology and platforms. Eighty-five percent (1,152 samples) of the 
LCAMGDB gene expression data were reprocessed. B, Platforms with multiple studies reprocessed through standardized workflow. Each box within the bars 
represents a single dataset. C, In PCA using the 1,000 most variable genes from reprocessed RNA-seq data, the top two PCs account for 62% of the total 
variance. D–F, Distribution of 563 RNA-seq samples by source dataset (D), histology (E), and primary/metastasis status (F). BGI, Beijing Genomics Institute. 
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The second visualization option generates a two-dimensional 
PCA plot, with sample points colored based on variables such as 
gene expression, histology, primary/metastasis status, sample type, 

or data source. Precomputed and ad hoc PCA computation is 
available, and the latter allows users to dynamically recompute PCs 
based on their selected subsets of data. In Fig. 7A, we demonstrate 
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Figure 4. 
Interactive visualization of gene expression across multiple datasets. This figure features the web application’s capability for users to interrogate the expression of a 
selected gene, Cd274 (PD-L1), across a range of datasets. The “Depositor-processed” option leverages the original data processed in the deposited datasets, optimizing 
the within-dataset comparisons. Users can tailor the analysis by applying filters via the dropdown menu. After selecting the appropriate parameters and clicking 
“Submit,” the application generates dot plots arrayed by the statistical significance of their expression differences, as assessed by one-way ANOVA. Displayed here are 
the top six datasets from the full results, giving users a snapshot of the gene expression landscape within the application’s extensive repository. Bars in each plot denote 
the group median. ADSQ, adenosquamous carcinoma; LCNEC, large cell neuroendocrine carcinoma; Ox/Cy, oxaliplatin and cyclophosphamide. 
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this with RNA-seq samples colored to reflect Ascl1 expression—a 
neuroendocrine lineage transcription factor instrumental in SCLC 
pathogenesis (40, 41). Consistent with the histologic segregation 
observed in Fig. 3E, samples with lower PC1 scores, predominantly 
of SCLC histology, exhibit elevated Ascl1 expression. 

However, some outliers were identified: a few ADC samples with 
higher PC1 scores also showed high Ascl1 levels. Using the interactive 
tooltips, users can examine these outliers in detail to understand their 
context. In this example, we found that ADC samples are derived from 

a model with constitutively active Fgfr1K656E in an Rb1/Trp53–deficient 
background (Fig. 7A; ref. 42). Although Rb1/Trp53 models generate 
classic SCLC, Fgfr1 activation in this model has reduced Ascl1 expres-
sion (42), making it lower than classic SCLC but still higher than classic 
ADC tumors from other models (Supplementary Fig. S7). 

In another example using the PCA plot with histology color 
mapping, there are a few notable outliers among the NSCLC sam-
ples that are identified as SCLC (Fig. 7B). This particular discrep-
ancy is clarified upon recognizing that these SCLC samples have 
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Figure 5. 
Gene expression comparison by treatment and primary/metastasis status. A, Expression of Cd19 revealing B-cell infiltration in various treatment contexts. Data 
points are categorized by treatment conditions under each genotype. B, Expression of Ezh2 in primary and metastatic tumor samples. Color gradient signifying 
the spectrum of metastatic progression stages. P values from one-way ANOVA are indicated, and results were ordered by statistical significance. For con-
ciseness, only the top four datasets of the 10 for Cd19 (A) and the top two of the five for Ezh2 (B) have been included in the snapshots. Bars in each plot denote 
group median. 
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Figure 6. 
Expression of Cd19 in reprocessed RNA-seq data. Each dot represents a unique sample, colored according to histology and ordered by the median 
expression of Cd19. The inputs are filtered to display primary tumors only. The median of the group is shown as a bar for each row. ADSQ, adenosquamous 
carcinoma; LCNEC, large cell neuroendocrine carcinoma; NTCU, N-nitroso-tris-chloroethylurea; Ox/Cy, oxaliplatin and cyclophosphamide. 
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undergone Ascl1 knockout, leading to a complete loss of neuroendo-
crine cell fate (41) that rendered the transcriptomic landscape of the 
SCLC sample more akin to that of NSCLC samples, explaining its 
outlier position in the PCA plot. These examples underscore how in-
teractive plots equipped with tooltips provide critical insights into 
sample-specific details, enabling deeper exploration of unexpected 
patterns. 

Users also have the option to visualize data points according to 
the data source; the interactive plots enable users to selectively focus 

on, or exclude, samples from specific sources by clicking or double- 
clicking on dataset identifiers, thereby providing a clearer under-
standing of the underlying data distribution across studies (Sup-
plementary Fig. S8). 

Transcriptome-wide group comparison 
The transcriptome-wide group comparison feature in 

LCAMGDB provides users with the ability to conduct differential 
expression analyses between two distinct sample groups. This 
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Figure 7. 
Interactive visualization of gene expression in reprocessed data merged by platform. A, PCA plot of reprocessed RNA-seq samples, color-coded by the 
expression of Ascl1, a neuroendocrine lineage transcription factor highly expressed in SCLC. The interactive tooltip uncovers the origin of an outlier sample with 
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functionality is available for both depositor-processed data and 
reprocessed data. 

In Fig. 8, we provide an example comparing Myc-overexpressed 
tumors with wild-type lung samples from GSE10954 (43). The in-
teractive filters allow the selection of groups based on variables such 

as genotype, treatment, or sample type (Fig. 8A). After defining the 
groups, users may explore the analysis outputs on the web app or 
download them as an Excel file for further examination. Figure 8B– 
E are examples of the downloadable results, including the user- 
defined group stratification (Fig. 8B), differentially expressed genes 
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Figure 8. 
Transcriptome-wide group comparison of Myc-overexpressed tumors vs. wild-type lung samples. A, User interface for defining group 1 (Myc-overexpressed 
tumors) and group 2 (wild-type lung samples) using depositor-processed data. The panel allows users to refine input datasets and samples based on variables 
such as genotype, histology, and treatment, with a sample tree for finalizing sample selection. B–E, Example outputs from the downloadable Excel file, including 
the group stratification (B), the gene-level comparison from the two-sample t test (C), and pathway enrichment analysis with hypergeometric test from 
Reactome pathway library for genes higher in the lungs (group 2; D) or higher in tumors (E). 
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from the two-sample t test, identifying Myc among the most 
upregulated genes in tumor samples, along with other well-known 
Myc targets such as Gls (encoding glutaminase; Fig. 8C; ref. 44). 
Furthermore, pathway enrichment analyses revealed higher ex-
pression of oxidative phosphorylation genes in the lungs (Fig. 8D) 
and upregulation of cell-cycle genes in tumors (Fig. 8E). This ex-
ample analysis highlights how this tool uncovers biologically 
meaningful patterns, leveraging the high fidelity of depositor- 
processed data. 

Reprocessed data analyses expand the scope to include samples 
across multiple datasets. Users can select groups from harmonized 
data but should be mindful of potential batch effects. Researchers 
may reference our online tutorial with an example that compared 
SCLC and NSCLC samples from different studies, to better under-
stand how to use this tool. Although this approach is ideal for 
identifying trends and validating findings, depositor-processed data 
remain more reliable for finer, exploratory analyses, minimizing the 
risk of confounding factors. We welcome collaborations with re-
searchers interested in performing more sophisticated statistical 
analyses or customized study designs. 

Discussion 
Our LCAMGDB presents a curated compendium of tran-

scriptomic data covering 1,354 samples from 71 studies, summa-
rizing a vast array of lung cancer mouse models. This resource 
interrogates the genetic aberration landscape across 859 GEMM 
tumors, providing an unprecedented platform for cross-study 
comparison. Our collaborative approach, engaging with data de-
positors, has ensured the integrity and enhancement of the database, 
leading to its current comprehensive state. 

However, we have to consider the limitations inherent to the 
database’s scope. The LCAMGDB is founded on transcriptomic 
data, which excludes mouse models lacking such characterization. 
This limitation underscores the need for an inclusive approach that 
considers unpublished or less-publicized models to achieve a com-
prehensive and representative overview of genetic alterations in lung 
cancer autochthonous models. The dynamic nature of scientific 
research also necessitates the LCAMGDB to be a living database, 
with ongoing updates and expansions informed by both community 
feedback and continual data discovery. Future versions will integrate 
additional datasets, reflecting the latest advancements and filling in 
gaps identified through collaborative suggestions and our active 
searches. These updates will include datasets featuring key Kras 
mutant models, such as Kras G12C (e.g., Kras/Trp53 and Kras/Stk11 
models), which are not represented in the current release. The 
candidate datasets to be included in the next update are listed in 
Supplementary Table S3. These include datasets from a more recent 
GEO/ArrayExpress screen and datasets suggested by the commu-
nity, such as toxicology studies of mouse lungs treated with car-
cinogens. We will also continue to develop the collaborator login 
system, enabling researchers to privately assess their data alongside 
public datasets. Although not expounded upon in this article, this 
function highlights the platform’s potential for fostering collabora-
tive research endeavors. 

It is important to note the caution required in interpreting the 
reprocessed data. Although standardization efforts have been rig-
orous, batch effects from diverse experimental and genetic back-
grounds may still be present. Users should not attribute the 
expression variation solely to genotype. Future updates will aim to 
support meta-analytical capabilities and provide insights from 

comprehensive cross-transcriptomic evaluations. Central to the 
LCAMGDB use is its facilitation of comprehensive comparisons 
between mouse models, additional preclinical model data, such as 
patient-derived cell lines, patient-derived xenografts, syngeneic 
mouse models, and human lung cancer data. This alignment is 
crucial for translating preclinical findings to clinical relevance, 
aiding in the development of personalized therapies. The database’s 
current iteration lays the groundwork for such comparative studies, 
which we plan to explore in-depth in subsequent analyses. 

In sum, the LCAMGDB offers a robust framework for the ex-
ploration of gene expression data within mouse models, setting the 
stage for additional comprehensive analyses that have the potential 
to unveil new discoveries and guide the design of future models for 
a more accurate reflection of human lung cancer. 
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