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to the high mortality of lung cancer, there is a critical need to develop diagnostic procedures enabling
etection of the disease while at a curable stage. Targeted molecular imaging builds on the positive attri-
of positron emission tomography/computed tomography (PET/CT) to allow for a noninvasive detection
aracterization of smaller lung nodules, thus increasing the chances of positive treatment outcome. In this
we investigate the ability to characterize lung tumors that spontaneously arise in a transgenic mouse
. The tumors are first identified with small animal CT followed by characterization with the use of small
l PET with a novel 64Cu–1,4,7,10-tetra-azacylododecane-N,N',N'',N'''-tetraacetic acid (DOTA)–knottin pep-
at targets integrins upregulated during angiogenesis on the tumor associated neovasculature. The im-
results obtained with the knottin peptide are compared with standard 18F-fluorodeoxyglucose (FDG) PET
animal imaging. Lung nodules as small as 3 mm in diameter were successfully identified in the trans-
mice by small animal CT, and both 64Cu-DOTA-knottin 2.5F and FDG were able to differentiate lung
s from the surrounding tissues. Uptake and retention of the 64Cu-DOTA-knottin 2.5F tracer in the
umors combined with a low background in the thorax resulted in a statistically higher tumor to back-
d (normal lung) ratio compared with FDG (6.01 ± 0.61 versus 4.36 ± 0.68; P < 0.05). Ex vivo biodis-
on showed 64Cu-DOTA-knottin 2.5F to have a fast renal clearance combined with low nonspecific
ulation in the thorax. Collectively, these results show 64Cu-DOTA-knottin 2.5F to be a promising can-
accum

didate for clinical translation for earlier detection and improved characterization of lung cancer. Cancer Res;
70(22); 9022–30. ©2010 AACR.
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pite advances in cancer management and treatment,
ortality due to lung cancer is still strikingly high with
rage 5-year survival of only 15% (1). The major contrib-
o the high mortality is diagnosis at a stage when the
ood of effective treatment is low (2–4). Therefore, there
ed to develop technologies that will aid in the earlier
ion of lung nodules (e.g., molecular imaging probes
re able to detect small tumors early in disease).
puted tomography (CT) is increasingly uti-
ng patients with a high risk of developing lung
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r. CT screening has a high sensitivity (median, 96%;
81-100%; ref. 5) and can detect lung lesions in the sub-
eter range but is limited by a relatively low specificity
an, 82%; range, 50-95%; ref. 5), resulting in frequent false-
e screening results (5, 6). Combined positron emission
raphy (PET) and CT with 18fluorodeoxyglucose (FDG)
fferentiate benign from malignant lesions >1 cm in di-
r with high sensitivity and reasonably good specificity
However, noninvasive characterization of smaller le-
with 18FDG-PET/CT remains challenging due to the
lume of tumor, the partial volume effect, and inherent
round from metabolic active tissues in the region of in-
Invasive procedures, such as thin-needle biopsy, are dif-
to do because of the small lesion size and number of
tial lesions to biopsy, and challenging due to the associ-
igh risk of missed sampling (7, 9–12). As clinical PET/CT
ers continue to improve in spatial resolution and sensi-
there is an opportunity to improve tumor detection/
ement with better tracers. A targeted imaging modality
the opportunity to expand on the positive attributes of
T and allows for a noninvasive detection and character-
of smaller lung nodules, thus increasing the chances of
e treatment outcome.
e a tumor grows beyond 1 to 2 mm in diameter, it

es dependent on angiogenesis to support its growth
4). Imaging probes that target cell surface markers
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d to angiogenesis, such as integrins, show potential
rly cancer detection (15, 16). Integrins are a family of
embrane-bound receptors consisting of α and β sub-
oncovalently linked as heterodimers. Integrins are in-
in cell-to-cell and cell-to-extracellular matrix adhesion,
ay a major role in cell migration processes, such as angio-
s and metastasis. Expression of integrins, particularly,
αvβ5, and α5β1, are significantly upregulated on tumor
culature andmany tumor cells compared with quiescent
elium and normal tissue (14–17), making them a prom-
arget for differentiating tumor from normal vasculature.
his study, we investigated the ability to image and char-
e lung tumors that spontaneously arise in a transgenic
model. The tumors were first identified with small ani-
T followed by characterization with the use of small
l PET with our novel 64Cu–1,4,7,10-tetra-azacylodode-
,N',N'',N'''-tetraacetic acid (DOTA)–knottin peptide engi-
to bind integrin receptors with high affinity. Knottins,
own as cystine knots, are 20 to 60 amino acid peptides
onsist of at least three interwoven disulfide bonds, im-
g high thermal and proteolytic stability (18). Previously,
d the Ecballium elaterium trypsin inhibitor II (EETI-II),
tin from the squash family of protease inhibitors, as amo-
scaffold to engineer peptides that bindwith high affinity

or-related integrin receptors (17). We showed that the A d

1. Mice were sacrificed after imaging with Cu-DOTA-knottin 2.5F (end point), a
.

acrjournals.org
sp (RGD) motif, binds a range of integrins subtypes
αvβ5, and α5β1) with affinities in the low nmol/L range
veloped it as a promising new probe for molecular im-
applications in living subjects (19).
conditional transgenic mouse model used in this
spontaneously develops lung tumors upon activation
K-Ras and MYC oncogenes upon the administration
ycycline (20). Lung tumor status was serially moni-
by small animal CT screening, and mice with CT-
e lung lesions were further examined with the use of
animal PET. Comparative PET imaging was done with
OTA-knottin 2.5F and 18F-FDG (Fig. 1). Both probes

able to identify lung tumors seen on CT. Uptake and
ion of the 64Cu-DOTA-knottin 2.5F tracer in the lung
combined with a low background in the thorax re-
in a statistically higher tumor to background (normal
ratio compared with FDG, which shows the potential of
OTA-knottin 2.5F to be a promising candidate for clin-
anslation for earlier detection and improved character-
of lung cancer.

rials and Methods

genic mouse model

etailed description of the generation of the transgenic
I–based knottin peptide 2.5F, which contains an Arg- mouse model and genotyping by PCR has been previously

1. Schematic representation of experimental design. In the lung-specific conditional transgenic mouse model used in the study, expression of
is driven by the lung-specific CCSP promoter, and the expression of the oncogenes KrasG12D and MYC is under control of the TetO. Absence of

cline prevents rtTA from binding to TetO; thus, there is no expression of KrasG12D and MYC. Presence of doxycycline triggers a conformational
of TetO that enables rtTa binding, and expression of KrasG12D andMYC. Expression of KrasG12D andMYC is controlled by giving doxycyline through
king water. Lung tumors develop with an average latency of 36 weeks after administration of doxycycline (20). Serial small animal CT screening
ed to monitor tumor development. Mice with positive CT findings underwent combined PET/CT with 18F-FDG at day 0 and 64Cu-DOTA-knottin 2.5F

64
 nd tumor sections were flash-frozen for immunofluorescence

Cancer Res; 70(22) November 15, 2010 9023
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bed (20, 21). Briefly, the transgenic mouse model used
study was established by crossing transgenic lines con-
g the Clara cell secretory protein (CCSP) promoter driv-
e reverse tetracycline transactivating protein (rtTA), a
ine under the control of the tetracycline-responsive
(TetO) and a mutant KrasG12D line under control of

The desired result was the biconditional model CCSP-
etO–MYC/TetO- KrasG12D.
ression of the MYC and KrasG12D oncogenes was acti-
by weekly administration of 100 mg/mL doxycycline
) to the drinking water. Activation was initiated after
ng, typically 4 to 6 weeks of age, and tumors developed
n average latency of 36 weeks. All animal procedures
carried out according to a protocol approved by the
rd University Administrative Panels on Laboratory
l Care.

animal CT
ll animal CT scans were done with the use of a cus-
E Medical Systems eXplore RS MicroCT System
eam scanner (GE Medical Systems). Seven transgenic
with activated MYC and KrasG12D underwent serial
animal CT screening weekly for 3 weeks. Mice were
etized with 2% isofluorane in 2 L/min oxygen and
ned prone. Images were acquired at 97 μm resolution
70 kV (40 μA) beam, 12 ms exposure, and 400 radial views
360-degree rotation. The respiration was monitored du-
e scan with a BioVet monitoring system (m2m Imaging
and the acquisitions triggered to the end of the inspi-
phase.

tracers
thesis and radiolabeling of the knottin 2.5F probe was
as previously described by us (19). 18F-FDG was sup-
y the cyclotron and radiochemistry facility at Stanford
sity with high specific activity.

ity of 64Cu-DOTA-knottin 2.5F
u-DOTA-knottin 2.5F in PBS was incubated in an
volume of mouse serum at 37°C and analyzed at
4 hours after incubation. At the indicated time points,
lume of solvent A (99.9% H2O and 0.1% trifluoroacetic
and one volume of dimethylformamide (Sigma) were
, and the resulting solution was centrifuged and filtered
0.2-micron spin filter (Corning). This mixture was ana-
by radio high-performance liquid chromatography
). Urine samples collected from mice 1 hour post-
on of 64Cu-DOTA-knottin 2.5F was diluted to 1 mL with
t A and analyzed by radio HPLC.

o biodistribution
lthymice (N = 5)were anesthetized and injectedwith 66.3
6 μCi (2.45-2.61 MBq) of 64Cu-DOTA-knottin 2.5F in
PBS through the tail vein and were euthanized 1 hour
jection. The urine from 3 mice was collected for metab-
nalysis by radio HPLC. Blood, heart, liver, lungs, muscle

s, spleen, brain, intestine, stomach, pancreas, and bone
emoved and weighed. The radioactivity of each organ

and fl
at 10

r Res; 70(22) November 15, 2010
easured by gamma counting and the activity level ex-
d as percent-injected dose/g tissue (%ID/g) or percent-
d dose/cm3 (%ID/cm3) for soft tissue and the lungs. Soft
was assumed to have a density of 1 g/cm3. Before injec-
f the tracer, the mice (N = 5) underwent small animal
he densities of the lungs were calculated by dividing
eight of the lungs with the volumes estimated by CT.

animal PET/CT
4 microPET (Siemens Medical Solutions USA, Inc.) was
or small animal PET imaging. Mice with CT-positive
es underwent PET imaging with 18F-FDG on day 0 (rela-
CT scan) and with 64Cu-DOTA-knottin 2.5F on day 1.
ere anesthetized with 2% isofluorane in 2 L/min oxygen
jected with 93 to 115 μCi (3.44-4.26 MBq) of either
G or 64Cu-DOTA-knottin 2.5F in 150 μL PBS through
il vein. Mice were placed in a holder with four fiducial
rs, each containing ∼0.5 μCi of either 18F-FDG or
OTA-knottin 2.5F in 10 μL iodine solution (30 mg/mL).
the PET scanmice underwent small animal CT scanning
cribed above, followed by a 15-minute prone PET acqui-
∼60 minutes post-injection of tracer. For 18F-FDG-PET,
ere maintained under anesthesia in between injection
aging. During anesthesiamicewere keptwarmon a heat-
d. For knottin 2.5F, mice were allowed to recover from
esia in between injection and scanning. PET images were
tructedwith the use of the two-dimensional ordered sub-
pectation maximization algorithm with a spatial resolu-
f 1.66 to 1.85 mm (22). No attenuation correction or
l volume corrections were applied.

analysis
imaging data were analyzed offline with the use of soft-
eveloped in our laboratory (AMIDE version 0.8.22; ref. 23),
e 3D volume viewer and analysis software (MicroView).
animal PET/CT images were coregistered by manually
fying the center of the fiducial markers in the CT and
ages, and applying a built-in function for coregistration
software. Regions of interest (ROIs) were subsequently
over the nodules and healthy lung tissue based on the
ages. Voxel values were converted to μCi/cm3 by multi-
with a cylindrical factor obtained by scanning a cylindri-
antom with a known concentration of activity. For each
e mean uptake as %ID/g was calculated assuming a tis-
nsity of 1 g/cm3. For each nodule the tumor-to-back-
d ratio was calculated. The volumes of the lungs
stimated by drawing a rough ROI over the thorax of
ouse followed by simple binning to include only voxels
T values corresponding to lung tissue.

nofluorescence
ubset of the mice (N = 4) were sacrificed immediately
4Cu-DOTA-knottin 2.5F PET imaging. The lungs were
ed and dissected into pieces containing tumor tissue
ng tissue without visible tumor mass. The tissue pieces
embedded in optimal cutting temperature compound

ash frozen on dry ice. Frozen blocks were sectioned
microns and mounted on charged glass slides for

Cancer Research
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nofluorescence. A double-staining procedure was applied
alize endothelial cells (CD31) and integrins (αv-subunit).
llowing were used to stain for CD31: a rat anti-mouse
primary antibody diluted 1:100 (BD Biosciences), a
nti-rat biotinylated secondary antibody diluted 1:500
on ImmunoResearch Laboratories), and streptavidin-
ated Alexa Fluor 488 diluted 1:200 (Invitrogen). The
ing were used to stain for αv: a rat anti-mouse αv-
ylated primary antibody diluted 1:200 (Jackson Immu-
earch Laboratories) and streptavidin-conjugated Alexa
594 diluted 1:200 (Invitrogen). Fluorescent images were
ed with a microscope (Axiophot, Carl Zeiss).

tical analysis
a are given as mean ± SEM unless stated otherwise.
ifference between the knottin 2.5F and FDG tumor-
kground ratios was assessed with the use of the two-
Mann-Whitney test. A P-value <0.05 was considered
ically significant.

lts

animal CT screening
seven transgenic mice that underwent serial small an-
T screening for 3 weeks were identified to have posi-
T lung lesions. Next, we investigated the stability and
tribution of the 64Cu-DOTA-knottin 2.5F tracer before
it in a comparative study to characterize the lung le-
with the use of FDG and 64Cu-DOTA-knottin 2.5F PET.

and in vivo stability of knottin 2.5F
-DOTA-knottin 2.5F incubated in mouse serum and
samples from mice injected with 64Cu-DOTA-knottin
ere analyzed by radio HPLC to test the stability of the
under physiologically relevant environments. All sam-
ow a major elution peak at 14 minutes corresponding

intact probe. The probe is mainly excreted intact in
and it is highly stable after 4 hours of serum incubation

64Cu-D
the ra

2. Ex vivo biodistribution of Cu-DOTA-knottin 2.5F. The biodistribution of knot
ed as %ID/g (left) and %ID/cm3 (right); error bars, SEM.

acrjournals.org
lementary Fig. S1). Overall, the radio-HPLC analysis
d that the probe is stable at the conditions tested and
able as an in vivo imaging probe.

o biodistribution
biodistribution of 64Cu-DOTA-knottin 2.5F was in-

ated in healthy mice 1 hour post-injection (Fig. 2).
racer cleared rapidly through the kidneys (11.43 ±
ID/cm3). Modest levels of background activity were
ed in the stomach, intestine, spleen, and liver (1.28-
D/cm3) in agreement with previous reports (19). Lower
round signal was seen in the brain, blood, muscle, pan-
lungs, and heart (0.04-0.50%ID/cm3).

animal PET/CT
e with CT-positive tumors underwent PET imaging
8F-FDG and with 64Cu-DOTA-knottin 2.5F. For both
s, differentiation of lung nodules from surrounding
ssue was possible based on PET images obtained 1 hour
njection. However, in a few cases (N = 3), in which the
es were in close proximity to the heart, delineation of
e boundaries was very difficult with FDG-PET. This
ue to relatively high 18F-FDG uptake in the heart
± 2.74%ID/g), leading to a spillover effect into the sur-
ing tissue. Importantly however, nodules that were ob-
by high 18F-FDG heart spillover were clearly visible on

Cu-DOTA-knottin 2.5F images (Fig. 3). These images
ade possible because of the low thoracic background
that is characteristic of knottin peptides [18].
rall, the radioactivity uptake in the nodules, measured
/g by ROI analysis, was higher for 18F-FDG compared

64Cu-DOTA-knottin 2.5F (Supplementary Fig. S2).
ver, ROI analysis of 10 distinguishable tumors showed
er tumor-to-background ratio for the 64Cu-DOTA-
n 2.5F tracer compared with FDG (Table 1). The tumor-
kground ratio was 6.01 ± 0.61 (range, 3.51-9.05) for

OTA-knottin 2.5F, which was significantly higher than
tio obtained with FDG, 4.36 ± 0.68 (range, 1.70-8.30;
64
 tin 2.5F in healthy mice (N = 5) 1 hour post-injection. Uptake

Cancer Res; 70(22) November 15, 2010 9025
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05 by two-sided Mann-Whitney test; Fig. 4). Higher
-to-background ratios of 64Cu-DOTA-knottin 2.5F result
ow background in the thorax, which facilitates nodule
fication in regions made inaccessible by higher back-
18F-FDGuptake (0.30 ± 0.03%ID/g for 64Cu-DOTA-knottin
ersus 1.35 ± 0.13%ID/g for FDG; Fig. 5 and Supple-
ry Fig. S2).

nofluorescence
use lung with nodules identified with 64Cu-DOTA-
n 2.5F PET were double-stained for mouse CD31, a
r expressed on endothelial cells, and αv-integrin sub-
confirm the presence of the imaging target. Immuno-

scence showed colocalization of CD31 and αv, (Fig. 5),
confirms the presence of the imaging target on the
vasculature.

ssion

pite advances in diagnostic clinical imaging, there is a
l need for new imaging agents and new methods that
noninvasive characterization of lung lesions in the sub-
eter range. Engineered knottin peptides have recently
alidated by our group to specifically image integrin-
sing tumors in xenograft mouse models (17, 19, 24–27).
we expand on our previous work and show that we
haracterize spontaneous lung tumors developing
onditional transgenic mouse model with the use of

OTA-knottin 2.5F and combined small animal PET/
hese transgenic mouse models provide a unique

visible
in %ID
Bars, m

r Res; 70(22) November 15, 2010
tunity to study tumorigenesis in a lung cancer model
ore closely resembles the "natural" development
Fig
sec
(top
sho
a n
Gra
PET
out
the
diff
ma
col
derlying concern with the use of artificial xenografts

4. Tumor-to-background ratio of knottin 2.5F and FDG. ROIs
rawn over tumors (N = 10) and areas in the lungs without
tumor mass on CT (background). For each ROI the mean uptake

/g was estimated and the
ean ± SEM. *, P < 0.05
3. Small animal PET/CT. Transverse
s of the same mouse imaged with FDG
d knottin 2.5F (bottom). Left, CT images
g the lungs (L), heart (H), spine (S), and
le (N) immediately adjacent to the heart.
ale, Hounsfield units (HU). Right, fused
images. The nodule can easily be

d based on the knottin 2.5F, whereas
h uptake of FDG in the heart makes it
t to delineate the nodule. Note different
um values on top and bottom PET
tumor-to-background ratio calculated.
for two-sided Mann-Whitney test.

Cancer Research
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s (28, 29), these studies provide additional information
ill aid in clinical translation of newly developed
ular imaging probes.
performance of knottin 2.5F, a peptide engineered

� 0.11 1.09 0.61 0.68
get integrin receptors, was compared with that of
G. We were able to obtain a higher tumor-to-

to int
face o

(arrows).

acrjournals.org
round ratio with 64Cu-DOTA-knottin 2.5F compared
8F-FDG (6.01 ± 0.61 versus 4.36 ± 0.68; P < 0.05) due
w background signal in the area of interest. It has pre-
y been reported that anesthesia does not influence the
uptake of FDG (30). It is unlikely that the difference in
-to-background ratio can be addressed to the differ-
n anesthetic regiment between the two probes during
aging. Lung lesions imaged with 64Cu-DOTA-knottin

re clearly visible, allowing for easier image interpreta-
ompared with 18F-FDG due to a large spillover effect
uptake in the heart. However, it is important to note
n a few cases, the quantification of 18F-FDG uptake
sed toward a higher tumor uptake because of this
er from the heart to the adjacent lung tumors. The
ce of the αv-integrin imaging target on the tumor
sculature was confirmed by ex vivo fluorescence mi-
py. Furthermore, in a previous study we determined
ecificity of integrin-binding knottin probes by compe-
with an excess of unlabeled peptide (19). Collectively,
sults indicate that engineered knottin peptides are
o provide detailed molecular information about re-
rs expressed on vascular endothelium and the sur-
f tumors. Studies that use dynamic PET imaging
ompartment modeling are in progress to investigate
action of the signal originating from knottins bound
1. Result
 of quantitative R
 I analysis
Uptake
 Tumor-
Knot
(%ID/g)

n 2.5F FDG
to-

Knot
ackground

n 2.5F FDG
2
 36 14.9
 7
 44 8.30

1
 65 5.10
 5
 20 2.84

1
 30 5.10
 4
 10 2.84

1
 39 7.08
 4
 38 3.94

1
 75 5.33
 8
 29 3.67

2
 03 4.60
 7
 44 5.56

2
 12 8.72
 5
 71 7.36

1
 99 5.10
 9
 05 4.78

1
 38 4.46
 3
 51 2.64

1
 66 2.41
 4
 94 1.70
. .
1.76 6.28 6.01 4.36
egrins on the endothelium compared with the sur-
f the tumor.
5. A, volume renderings of
rax of a mouse imaged with
ft) and knottin 2.5F (right).
le is present immediately
t to the heart and is clearly
when knottin 2.5F is used.
ense FDG uptake in the
akes it impossible to
te the nodule. Movies of
me rendering images are
le online as supplementary
l. B, immunofluorescence
r sections. Sections were
for CD31 (left) and

grin (center). Merging
two images (right)
that the expression of
grin colocalizes with the
sion of the CD31 on the
Cancer Res; 70(22) November 15, 2010 9027
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ical studies with radiolabeled RGD peptides (18F-galacto-
nd 18F-AH111585) for PET imaging have shown the
ility of imaging integrin receptors expressed on tumor
nd tumor neovasculature in cancer patients (17, 31–
addition, recent studies show that the pharmacokinet-
integrin-targeting peptides may easily be fine-tuned
, 37). For example, in an orthotopic lung cancer mouse
l, PET imaging with 64Cu-DOTA–labeled PEGylated
ic cyclic RGD peptide showed better tumor delineation
red with imaging with 18F-FDG. These studies show
tential of integrin imaging for early diagnosis and
ry staging of lung cancer (15).
important characteristic of any imaging probe is its up-
fficiency at the tumor site and its lack of accumulation
tumor sites. The optimal probe will have high affinity
target of interest, leading to high uptake, and at the

time show minimal background accumulation (38).
cant work has been put into engineering multimeric
eptide probes with increased affinity toward integrins.
eric RGD peptide probes show higher tumor accumu-
and retention in vivo, but are also accompanied by and
se uptake in nontumor tissues (36, 39, 40). In contrast,
ering of the knottin scaffold with the monomeric RGD
g motif shows comparable affinity toward integrins as
trameric RGD peptide 64Cu-DOTA-E{E[c(RGDfK)]2}2
maintaining a low accumulation in normal tissues,
g to a higher tumor-to-nontumor tissue ratio (Supple-
ry Table S1).
mmon criterion for diagnosing malignancy with FDG-
linically is the standardized uptake value, which is a
re of the absolute uptake in a given region normalized
ected dose and body mass. However, it has been re-
that using the tumor-to-background ratio improves

nsitivity of FDG-PET for diagnosis of small pulmonary
s (7). In the current study, the absolute radiotracer up-
the lung tumors was higher for FDG than for knottin
his example shows that the comparatively better con-
hown by knottin 2.5F was due to lower background
in the thorax for 64Cu-DOTA-knottin 2.5F compared
8F-FDG. Together, the favorable biodistribution and tu-
ccumulation merit further investigation to see if these
gs translate to the clinical setting.
ttins have previously been shown to be nonimmuno-
and a synthetic version of the knottin MVIIA (Zicono-
s approved for treatment of chronic pain (19, 41). We
successfully done up to six imaging sessions over
ths with 64Cu-DOTA-knottin 2.5F in immunocompe-
ice without the observation of an acute immune re-
(data not shown). This shows that repeated imaging

4Cu-DOTA-knottin 2.5F in mice is possible. However,
us toxicity studies will be required before clinical trans-
to minimize the possibility of an unexpected immuno-
eaction against 64Cu-DOTA-knottin 2.5F.
transgenic mouse model allows us to investigate if im-
of integrin expression with 64Cu-DOTA-knottin 2.5F
used to characterize the lesions identified on CT as

ant. However, the difficulties of generating adequate
ers of transgenic mice with the right genotype and

ments
effect

r Res; 70(22) November 15, 2010
ability to control the exact latency of tumor develop-
after administration of doxycycline made a rigorous in-
ation of the tumor development at the earliest time
sible. Therefore, we were not able to investigate in de-
e minimal detectable size of lung nodules that can be
terized as malignant by integrin imaging, but based on
ata we were able to characterize nodules as small as
in diameter as malignant (Fig. 3). Some of the mice
) had lesions <3 mm in diameter visible on CT (N = 5).
OTA-knottin 2.5F was able to delineate one lesion with
eter of 2.5 mm but missed the other small lesions,

as FDG missed all of the lesions <3 mm in diameter. As-
g that all lesions detected by CT are true-positive find-
he sensitivity of 64Cu-DOTA-knottin 2.5F and FDG for all
s is 73.3% and 66.7% respectively, and 100% for both
s for lesions >3 mm in diameter. Although we do not
istology to confirm the malignancy of the smaller le-
we know from previous work that lung lesions detected
correspond with lung cancer (20). A possible explana-
r failed detection of those small lesions by PET could
s of contrast in the PET images due to blurring originat-
m respiratory motion during the PET acquisitions and
l volume effect. Unlike CT, no respiratory gating was
d during the PET acquisitions.
ause of the relative poor resolution of clinical PET
ers the partial volume effect becomes substantial for
s in the subcentimeter range. For small tumors, partial
e effect will lead to underestimation of the true uptake
ecreased sensitivity; however, with the use of mathe-
al models, it is possible to correct for partial volume
With a combination of morphologic information ob-
from CT images, correction for respiratory motion,
w background signal from engineered peptides, such
u-DOTA-knottin 2.5F, partial volume effect–corrective
hms will likely lead to better estimations of true up-
lung nodules (42). Furthermore, clinical scanners with

ved spatial resolution continue to be developed, which,
ried to the right tracers, have significant potential for
ved cancer diagnostics/management.
clinical utility of 64Cu-DOTA-knottin 2.5F imaging will
o be carefully studied in patients with different types of
ancer. If knottin 2.5F imaging is able to outperform FDG,
d replace FDG-PET. Alternatively, if the knottin 2.5F im-
agent is not able to do as well as FDG, then it could be
cases inwhich FDGuptake is borderline, as indicated by
rmediate standardized uptake value. In these cases, FDG
ble to distinguish inflammation versus tumor, and the
n 2.5F may help to do so.
ummary, our results show that engineered peptides, such
-DOTA-knottin 2.5F, have the potential to be used in ear-
ction of lung cancer. However, further studies are needed
ress the smallest detectable tumor size by 64Cu-DOTA-
n 2.5F. Further studies will also be needed to understand
OTA-knottin 2.5F uptake in sites of pulmonary infection
flammation, which could lead to upregulation of integ-
ring the inflammatory process. Together with improve-

in scanner spatial resolution/sensitivity, partial volume
correction, and further engineering of knottins to
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